

Sun Glint

Preliminary Report to the Science Team

July 3rd, 2002

Sung-Yung Lee

Summary

- Visual inspection of images
 - Need uniform background
 - Small effect will not be noticed
- VIS and shortwave AIRS channels are affected on almost all ocean granules near 30 degree north.
 - Center latitude changes according to season
 - Effect can last up to 10 minutes
 - Sun glint distance < 200km(?)
 - The affected area can be as wide as 400 km
 - Effect can be 60K or larger
 - VIS channels can be saturated
 - Most shortwave IR window channels can be saturated
- AMSU channels 1 through 3 and 15 can be affected
 - Generally undetectable with exceptions (once a day?)
 - Possibly over calm ocean
 - Effect can be detected on 3 x 3 AMSU footprints
 - AMSU-2:up to 15K on the center footprint and 5 7K on the rest
 - AMSU-1,3 & 15: up to 5 to 7K

- Pacific ocean to the south-east of Japan
- Stormy on the northern half of granule
- Calm ocean to the south with patchy cloud
- 2616 cm-1 channel is not saturated, but many channels in M1a/M1b are saturated.
 - Radiance range were computed assuming Lambertian surface
- Maximum brightness temperature is 370K with SST of 300K(?)

Sun Glint Distance

AIRS Spectra without glint

July 2, 2002 syl

Sun Glint

AIRS Spectra with glint

July 2, 2002 syl

Sun Glint

AMSU/HSB channels

- Sun glint is not detectable on most granules
- Two granules, out of three days, were found to have detectable effect from sun glint
 - Granule 33 of June 14 has larger effect
 - Granule 155 of June 15 has half the effect
- Only AMSU channels 1 to 3 and 15 have detectable effect
 - 3 by 3 AMSU footprints have detectable effect
 - Sun glint distance < 50km(TBD)
 - AMSU channel 2 has the most effect up to ~15K
 - Other channels have up to ~7K

AMSU Channel 2

Granule 115 of June 14

Future Plan

- Use simulation to detect smaller sun glint
 - AMSU/HSB channels
 - Down to 1or 2K (?) over uniform background.
- Magnitude of sun glint
 - Function of surface condition granule 115 of June 14
- Use of window channels in retrieval
 - Sun glint distance is a good indicator of sun glint
 - Necessary, but not sufficient
 - Unpredictable sun glint effect
 - Forward algorithm assumes Lambertian surface
 - Too little reflected solar radiance when glinting, too much otherwise
- Saturated shortwave channels
 - Under investigation